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The inertial range for a statistical turbulent velocity field consists of those scales 
that are larger than the dissipation scale but smaller than the integral scale. 
Here the complete scale-invariant explicit inertial range renormalization theory 
for all the higher-order statistics of a diffusing passive scalar is developed in a 
model which, despite its simplicity, involves turbulent diffusion by statistical 
velocity fields with arbitrarily many scales, infrared divergence, long-range 
spatial correlations, and rapid fluctuations in time--such velocity fields retain 
several characteristic features of those in fully developed turbulence. The main 
tool in the development of this explicit renormalization theory for the model is 
an exact quantum mechanical analogy which relates higher-order statistics of 
the diffusing scalar to the properties of solutions of a family of N-body parabolic 
quantum problems. The canonical inertial range renormalized statistical fixed 
point is developed explicitly here as a function of the velocity spectral parameter 
e, which measures the strength of the infrared divergence: for e < 2, mean-field 
behavior in the inertial range occurs with Gaussian statistical behavior for the 
scalar and standard diffusive scaling laws; for e > 2 a phase transition occurs to 
a fixed point with anomalous inertial range scaling laws and a non-Gaussian 
renormalized statistical fixed point. Several explicit connections between the 
renormalization theory in the model and intermediate asymptotics are 
developed explicitly as well as links between anomalous turbulent decay and 
explicit spectral properties of Schr6dinger operators. The differences between 
this inertial range renormalization theory and the earlier theories for large-scale 
eddy diffusivity developed by Avellaneda and the author in such models are also 
discussed here. 
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1. I N T R O D U C T I O N  

The equation for a passive scalar T(x, t) diffusing in a random incom- 
pressible velocity field is given by 

0T ~-+v 

T 

V T = ~ A T  

,=o = To(X) 
(1) 

In (1), v is a prescribed incompressible velocity field, i.e., div v =0, 
and ~: > 0 is the coefficient of molecular diffusion. In fully developed 
turbulence(1 3) the velocity field is statistical with arbitrarily many spatial 
scales and long-range spatial correlations while fluctuating rapidly in time. 
The inertial range for the velocity field consists of those scales that are 
larger than the dissipation scale but smaller than the integral scale; an 
important problem in turbulence theory is to determine the inertial range 
renormalization theory (3 5) for the passive scalar in (1) at arbitrarily high 
Reynolds number in order to establish the universal features of passive 
scalar dynamics in the inertial range. This problem is of practical interest 
in its own right; it also serves as an important prototype problem for tur- 
bulence theories involving the Navier-Stokes equations, since the equation 
in (1) is statistically nonlinear even though this equation is linear for a 
given realization. One major difficulty in developing the inertial range 
renormalization theory for (1) at arbitrarily large Reynolds numbers is the 
fact that the velocity fields in fully-developed turbulence exhibit strong 
infrared divergences in the high-Reynolds-number limit. (3-5) 

The goal in this paper is to develop the complete explicit inertial range 
renormalization theory in a model (6-8) for (1) which, despite its simplicity, 
nevertheless involves statistical velocity fields with arbitrarily many scales, 
infrared divergence, long-range spatial correlations, and rapid fluctuations 
in time. These simplified models are the special case of (1) given by 

c3T 0T 
- ~  + v( x, t) -~y = ~c A T 

r l , = o  = To(x, y) 
(2) 

where the concentration T(t, x, y)  depends on the two spatial variables 
x, y. In (2) the velocity field is a stationary, zero-mean, Gaussian random 
field with correlation function given by 

( v ( x  + x' ,  t +  t') v(x' ,  t ') ) = k(Itt) R;(x) (3) 
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where 

R~(x)=f e2~iXklk]~ ~p~(Ik])po(~)dk (4) 

and e is a parameter with - oo < e < 4. It is worth mentioning here that this 
choice of the parameter e is 2/3 of that from refs. 4 and 5. The model in (2) 
has been nondimensionalized with dissipation scales of unit length so that 
p~(lk[),  a fixed, rapidly decreasing function with p ~ ( O ) -  1, represents the 
dissipative decay of the velocity field. In (4), the integral scale has been 
nondimensionalized to correspond to wave numbers [k[ = 0(6);  thus, the 
function po([k[) is a fixed infrared cutoff: po(]k]) is a smooth positive func- 
tion with po(lk[)-=l for [kf > 2  and po([kJ)-=0 for [kl <1.  The inertial 
range in the model at arbitrarily high Reynolds numbers corresponds to 
the wave numbers k with 

6 ~ Ikl ~ 1 (5) 

and 6--* 0 in the high-Reynolds-number limit. (6) For  example, in standard 
Kolmogoroff  turbulence theory, (3'6) 6=(Re) -3/4 with Re the Reynolds 
number, and e =  8/3 in (4). There is strong infrared divergence in the 
velocity field in (3), (4) in the high-Reynolds-number limit for e with 
2 < e < 4 because the mean energy diverges, i.e., 

(v2(x,t))--*oo as 6-- .0  for 2 < e < 4  (6) 

In this paper, the additional simplifying assumption is made that the 
velocity statistics are Gaussian white noise in time so that 

R(Itl) = V26(t) (7) 

with 6(0 the Dirac delta function and V a constant. Next, I briefly 
summarize and discuss some of the features for the inertial range renormal- 
ization theory for (2) which are developed in the remainder of this paper. 

With suitable zero-mean Gaussian random initial data To(x, y) for (2) 
[see (27), (28) below], the complete set of statistical quantities for 
T(t, x, y) at any later time involves the vector P of higher-order correlation 
functions defined by P = (P2N), N = 1, 2, 3, 4 ..... with 

P2u(t, x, y ) =  T(t, xi, y,) (8) 

and x = (x;), y = (Yi), x, y~R2N; with Gaussian random initial data, all 
odd statistics P2N i automatically vanish at any later time. The first crucial 
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step in the renormalization theory is developed in Section 2; there it is 
established that despite the infinities caused by the infrared divergence in 
(6), the vector of statistical correlations P defined in (8) remains finite in 
the high-Reynolds-number limit as 6 --* 0 for - oe < e < 4 with a structure 
independent of the infrared cutoff Po. This is achieved in Section 2 through 
an exact quantum mechanical analogy for (2) under the assumption in (7) 
developed through suitable manipulations of function space integrals and 
the Feynman-Kac formula(9); this parabolic quantum mechanical analogy 
yields representation formulas for P2N(t, X, y) via suitable solutions of 
quantum N-body problems and results in an infinite family of explicit 
Fokker-Planck equations for each of the higher-order statistics P2N. This 
is the main technical tool exploited throughout this paper. 

With the exact quantum mechanical analogy from Section 2, the 
explicit inertial range renormalization theory is developed in Sections 3 
and 4. The strategy for inertial range renormalization involves finding 
self-consistent scaling laws (~(~.),/3(2))=A(2) and a corresponding 
amplitude scaling A(2) so that with the transformation 

X r = -  ~ X  

y ' =  ~(2)y (9) 

c =/~(,~)t 

all the normalized correlation functions RA(A 1p) defined componentwise 
by 

( x y)) 
(RA(A 1P))2N= A(2) NPzu F(-~' 2 ' s  (10) 

approach a fixed point in the inertial range scaling limit as )~ ~ 0. In 
(10) the notation A 1p denotes the amplitude scaling of correlation 
functions with (A-aP)N=A()O N p2N, while R A denotes the rescaling 
transformation 

(RAp)N=P2N( f l~ )  X 2 '0~ 

I remind the reader that with (5), the inertial range scaling theories should 
necessarily apply in the limit with 2 ~ 0 after the high-Reynolds-number 
limit c5--,0 has been achieved (see Section 5 for further discussion). In 
particular, in Section 4, the existence of a canonical renormalized fixed 
point for the statistics is established in this limit, i.e., there exists P~ satis- 
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fying the limit in (10) as 2--* 0 together with the scale-invariant fixed-point 
equation 

RAp~=P~ (11) 

The fixed-point vector of statistics P~ is universal in the sense that it is 
independent of the infrared cutoff Po in the velocity and depends only on 
the velocity spectrum as characterized by the parameter 5. However, both 
the scaling laws ~(2), fl(2), A(2) in (9) and the structure of the fixed point 
P~ depend strongly on ~--there is a phase transition (6-8'1~ from Gaussian 
mean-field behavior for e < 2 to non-Gaussian anomalous behavior for 
e > 2. For the mean-field regime with e < 2, the canonical inertial range 
scaling laws in (11) are the ordinary diffusive scalings, 

~(~) = 

fl(2) = 2 2 (12) 

and: 

�9 The canonical fixed point Pc is Gaussian for e < 2 with dependence 
on the viscous decay factor p~(Iki). 

For the regime 2 < e < 4  with infrared divergence and long-range 
spatial correlations in the velocity field, the canonical scaling laws in (12) 
are superdiffusive with dependence on e and given by 

~X(~) = ,J e/2 

P(,~)=2 2 (13) 

and: 

The canonical fixed point P~ is non-Gaussian for 2 < e < 4  
provided ~c r 0; for this regime, the fixed point is independent of 
both cutoffs, po(lkJ) and p~(Ikl), as expected in an inertial range 
scaling theory for turbulence. 

Section 3 contains a complete discussion of the inertial range renor- 
malization of the second-order statistics P 2 ,  including explicit formulas 
exhibiting a phase transition in e to anomalous turbulent decay for 
2 < e < 4 from the usual diffusive decay for e < 2; in the quantum mechani- 
cal analogy for the second-order statistics, the phase transition in the 
inertial range scaling theory at e = 2 manifests itself as a transition from the 
behavior of solutions of the free-space Schr6dinger equation for e < 2 to 
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the behavior of a Schr6dinger equation with only pure point spectrum for 
e > 2. With the material in Section 3 as motivation, the complete renor- 
malization theory for P is developed in Section 4; there is a nice explicit 
connection between this inertial range renormalization theory and inter- 
mediate asymptotics, as suggested in earlier work, m'~2) and this is also dis- 
cussed in Section 4. Section 5 includes a brief discussion of the similarities 
and differences with the large-scale eddy diffusivity renormalization theory 
for (2) developed earlier (6-s) by Avellaneda and the author as well as 
other recent work (13) in the literature for the model in (2). For pedagogical 
reasons, the results in this paper are presented largely as formal calcula- 
tions; however, these calculations can be made mathematically rigorous at 
the expense of obscuring the main ideas, so these technical considerations 
are omitted here. It is worth mentioning here that there are other interest- 
ing analogies between various facets of turbulence theory and quantum 
theory which have been developed recently. (~4) 

2. AN EXACT Q U A N T U M  M E C H A N I C A L  A N A L O G Y  A N D  
R E N O R M A L I Z A T I O N  IN THE H I G H - R E Y N O L D S - N U M B E R  
L IMIT  

To develop the exact quantum analogy, first I recall the representation 
formula for a general solution of a parabolic quantum mechanical problem 
in N dimensions via function space integrals through the Feynman-Kae 
formula(9): The function O(t, x) with X ~ _ R  u satisfies the N-dimensional 
parabolic quantum mechanics problem 

(14) 

0 I,~o = Co(X) 

if and only if 

~(t,x)=E~I{exp[f ~ V(x +(2~c)l/2~(s),t-s)ds]} 
x Oo(X + (2~) '/2 [l(t))] (15) 

In (15), I](s) denotes a realization of N-dimensional Brownian motion 
with p(0)= 0 and Ep[-] denotes the function space integral obtained by 
averaging over p. I utilize the equivalence between (14) and (15) at several 
points below in developing the exact quantum analogy for higher statistics. 
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Next, following earlier work of Avellaneda and the author, (6-8) I use 
(14) and (15) to represent the solution of (2) as a function space integral. 
With the Fourier representation 

To(x, y) = f f  e 2"i(x" +yK) To(tl, k) dq dk (16) 

the solution of (2) is given by 

T(x, y, t) = f; eZ'iYkO(t, x, k, rl) f~o(q, k) dtl dk (17) 

where 0(t, x, k, it) solves the parabolic (imaginary-time) quantum problem 

~ _O = ~cO ~ - [ 2zcikv( x ,  t )  + ~c4~2k 23 ~, 
(18) 

O It = 0 = e2~ix~ 

Thus, according to (14) and (15), the solution of (2) through (18) is gwen 
by the function space integral representation, 

0(t, x, k, r/) = [exp(-x4rr2k2t)] 

x E~I{expl -2~ik f lv (x+(2~c) l /2 f l ( s ) , t - s )ds]}  

x exp{2ni[x + (2tr 1/2 fl(s)] q }~ (19) 
_1 

for a fixed realization of the velocity field v(x, t) with statistics in (3), (4). 
over the velocity Here and below ( . ) v  denotes ensemble averaging 

statistics. With (16)-(19) one calculates the formula 

N 

1-[ T(t, xi, Yi) 
i = 1  

N 

=fiRu• [exp(2~iy'k) exp(-tc4~2 Ikl2 t)] l-[ if'o(qj, kj) 
j = l  

x E~ exp (2rci ~ - k  i fo v(xj + (2x) 1/2 flj(s), t - s ) d s  
", j = l  

(20) 
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with y = (yt ..... YN)" To compute the average over the velocity statistics, 
(IlU=x T(t, xi, Yi))v, it follows from the formula in (20) that one only 
needs to calculate the average 

N 

( I  ])] x exp -2r~i ~ kj v(xi+(2tc)x/2fij(s),t-s)ds (21) 
j =  1 v 

For each fixed realization of Brownian motion Ii(s), the average over the 
velocity statistics involves the characteristic function of a zero-mean 
Gaussian random variable and thus this average can be calculated 
directly. (6-8) For velocity statistics with the form in (3), (4), the result is 
that the expression in (21) is given by 

f{ I 1} Ep exp 2rci 2 (xj+(2tc)*/2flj(s))qJ 
j = l  

• exp ki 
i , j=l 

R;(x,-- xj + (2~) ~/2 [/~j(s) -/~j (s')]) 

x k(Is-s'l)dsds')] (22) 

For the special case assumed in this paper of Gaussian white noise velocity 
statistics in time, with (7) the formula in (22) reduces to 

E{ [ l} Ep exp 2rci ~ (xj+(2rc)l/2flj(s))qj 
j = l  

x exp -47z2V 2 ~ k~ R;(x,-xj+(2~c)a/2[fl~(s)-flj(s)])ds 
i , j=l 

(23) 

Next, one recognizes that the expression in (23) is nothing else but the 
Feynman-Kac formula in (15) for an N-dimensional parabolic quantum 
mechanics problem with potential 

N 

VN(X , k ) =  --  E 47~2V2kik jR~6(x i -  x j  ) ( 2 4 )  
i , j = l  
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Thus, through (14), the function space integral in (23) is given exactly by 
~tu(t , X, k,  11) , which is the solution of the parabolic quantum mechanics 
problem 

= ~c ~ x O N +  vN(x, k) 0h, 
St (25) 

@N It=0 = ~~ q 

with the interaction potential given in (24) and A x=Z~.~  ~2/~x2. By 
summarizing the calculations in (20)-(25), one obtains the following result: 

Explicit Formula for Higher-Order Sea/or Statistics: 

(~1 ) ffR e2~iy'ke--Kag21kl2 tO N( t , X, k, 111) T(t, x i, Yi) = x• 

N 
x I~ To(~lt, kt) dq dk (26) 

l=l  

where @N solves the parabolic quantum mechanics problem in (25). This is 
the basic exact quantum mechanical analogy for the models in (2) which 
is utilized throughout this paper and elsewhere. (a5'16~ 

The formula in (26) involves deterministic initial data. For Gaussian 
random initial data, the real-valued function To(x, y) admits the spectral 
representation 

To(x, y) = f f  e 2'mx" + Yk)fCo(q, k) dW(q ) | dW(k ) (27) 

where 

~o(-~, -k )=  ~o(~, k) 

and d W ( q ) |  is complex two-dimensional Gaussian white noise 
satisfying (dW(rl) ), (dW(k)  ) =0  and 

( dW(q) |  dW(q ' ) |  ) =3(q +t/ ') 6(k + k') dt l d~1' dk dk' 

(28) 
If ( . ) o  denotes averaging over Gaussian random initial data, then ( - ) =  
((")~)o denotes the average over both the random velocity statistics and 
the random initial data. It is a completely straightforward calculation to 
compute the higher-order scalar statistics (I~N=I T(t, xi, Yi)) by averaging 
the formula in (26) over Gaussian random initial data by utilizing the 

822/'73/3-4-5 
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formulas in (27), (28) in a cluster expansion, i.e., "Wick's Theorem." In this 
fashion, one obtains the following result: 

Formula for Higher-Order Statistics with Gaussian Random Initial 
Data. 

(A) 

T(t, xi, Yi) = 0, N =  1, 2, 3 .... 

(B) For N =  1, 2, 3 .... 

T(t, xi, Yi) 

i -~ s f f R N x R N 
{exp[27ciy. ( g i - k - ~ i + k ) ]  exp(-8~z2xt Ik}2)} 

N 

Xl]12N(t,x,~i k--~i+k,~zi q - ~ i + q ) 1 ~  ITo(q,,k,)lZd~ dk 
l = l  

(29) 

Here N denotes the set of all partitions of 2N numbers {1, 2 ..... 2N} into 
N pairs of integers { {ii-, i [  }, {i~-, i• },..., {i N , i~ }} e ~ ,  where by conven- 
tion, i 7 < i ~ ,  l~<l~<N, and i~-<ik- +~, k = l ,  2 , . . . ,N-1 ;  the number of 
elements in r is L~l =(2N)!/2 NN!. Given o~eR N, the vectors ~_(o~), 
rq+(~) e R 2N are defined by the formulas 

~cot, j = i z - ,  I ~ < I ~ N  
(rq (co))j = [0, otherwise 

=~col, j = i ~ ,  l<~l<~U 
(rci +(c~))J (0, otherwise 

(30) 

2.1. Renormalization in the High-Reynolds-Number Limit 

In formulas (26) and (29), the higher-order statistics for the scalar 
T(t, x, y) have been expressed concisely through solutions of the family of 
parabolic quantum problems in (25) with the potentials defined in (24). In 
the high-Reynolds-number limit, c5 ~ 0 and R;(0) .zoo for 2 < ~ < 4 [see 
(5) and (6) above]; this infrared divergence in mean energy, in general, 
introduces strong divergences in the statistics for the scalar because the 
corresponding potentials in (24) obviously satisfy 

VN(X,k)-+ - o o  for appropriate values o f k  as 3-+0 for 2 < ~ < 4  (31) 
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The main fact established here in this subsection is that despite the infrared 
divergence implied by (31), nevertheless all the higher-order statistics for 
the scalar with Gaussian random initial data can be renormalized for all 
values of e with - oo < e < 4. This is established for the model in (2)-(4) 
through one simple analytic fact together with some elementary algebraic 
identities. 

The key analytic formula is the fact that R;(O)-R;(x)  is a well- 
behaved function in the limit 6 ~ 0  for 2 < e < 4  despite the fact that 
R;(0) ,~ oo; the limit of R ; ( 0 ) - R ; ( x )  is given by the formula 

R' (O) -R~(x )=f  [1-cos(27zkx)] Ikla-~poo(lkl)dk for - o o  

(32) 

The limiting quantity in (32) is finite for any fixed x for 2 < e < 4 because 
II-cos(2~zkx)]=O(lkx] 2) and this compensates for the divergence in 
Iki 1-" for Ikl ~< 1 to produce an integrable function in k. 

For Gaussian random initial data, it follows from the formula in (29) 
that one needs to assess the behavior of the potentials V2N(X, g~ k - z q + k )  
in the limit as 6 ~ 0. Despite the divergence in (31) for certain values of k, 
there is an elementary algebraic formula which permits one to rewrite 
V2N(X, k) for the special vectors k = z i - k - ~ i + k  solely through combina- 
tions of the convergent formula in (32). Without loss of generality, consider 
the case where ~ k -  z~+k e R 2N has the form 

7z i -k-g i+k  = (kl, - k l ,  k2, -k2,..., kN,  - - k N )  (33) 

[The more general case is reduced to this case through elementary trans- 
formations, as in (41)-(43) below.] With (24) one can verify readily the 
algebraic identity 

V~'6(x ( k l , - k  1 k u , - - k N ) )  2N~ , ~'"~ 

= -8~2v 2 [R;(0)-  R;(x2j-x2j ~)] k~ 
j 1 

I;(x2i_ ,, x2i, x2j_ 1, X2j) kik/t  E + (34) 
i< j  ) 

with the interaction potential I;(yl ,  Y2, Y3, Y4) given by 

/r;(Yl, Y2, Y3, Y4)= [-R;CYl--Y3)--R;(0)] q- [-R;(y 2 - y 4 ) -  R;(0)] 

+ [R~-(0)- R~(y~ -Y4)] + [R~(0) - R~(y 2 -Y3)] (35) 
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With (35), the algebraic formula in (34) and the analytic fact in (32) 
guarantee that for any x, 

e, 6 V2N(X, (kl, - k l  ..... kN, --kN)) remains finite 

in the high-Reynolds-number limit, 6 ~ 0 (36) 

I continue to utilize the formulas in (34), (35) in the limit 6--*0 in the 
remainder of this paper by simply substituting R'(0) - R'(x) from (32) and 
retaining the same notation from (34), (35) with the superscript 6 deleted. 
Since, from (29), the higher-order statistics for the scalar in the high- 
Reynolds-number limit are expressed through the parabolic quantum 
problems in (25) with the finite renormalized potentials in (34), (35) with 
6 = 0, this completes the discussion of the high-Reynolds-number renor- 
malization. Of course, the function R~(0) - R~(x) has a completely different 
large Ixl asymptotic behavior for e with 2 < e < 4 than for e < 2 and this 
results in a radically different behavior for solutions of the quantum 
problem in (25) in these two regimes. This manifests itself in the completely 
different inertial range renormalization theory in these two regimes as 
described earlier in (9)-(11) of the introduction and developed in detail in 
Sections 3 and 4 below. 

2.2. Fokker-Planck Equations for the Higher-Order 
Statistics in the High-Reynolds-Number Limit 

Consider the function t P 2 N ( t  , X, y) with x e R 2N and y e R N defined by 

f l  R e2r~iy'ke -8r~2xt Ikl2~t2N(t, (kl, --kl kN, -klv)) ~2N(t, x, y) = N• RN X, 

N 
x I-I IToOl/,kz)12d~l dk (37) 

l=1 

where r solves the parabolic quantum problem in (25) with the renor- 
malized potential V~N(x, (kl, - k l  ..... kN, --kN)) defined in (34) and (35) 
in the high-Reynolds-number limit. With (25), (34), (35), and (37), it 
follows immediately by a direct calculation that q~2N(t, X, y) satisfies the 
renormalized Fokker-Planck equation, 

a~2N ~ a2 
=KZIxCI)2Nq-2KZly(I)2N-'}-2V2 [Re(O)--R~(X2j--x2j l)]ay~{/52Nj 

at j = l  

c~ 2 
"~- V2 ~ ZS(x2i- l, x2i, x2j- l, x2j) ~ Q~)2N (38)  
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with initial data 

Here 

N 
(~2N I t = 0 :  1~I -Ro(x2i-1--x2i,  Yi) (39) 

i=1 

2N 6~2 2N 02 

ay=Z .= Ox/  
and Ro(x, y) is the correlation function of the Gaussian random initial 
data; thus, R 0 is given by 

Ro(x, Y)= ( To(x + x', Y + Y') To(x', Y') )o (40) 

With the solution of Eq. (38), the formula for the higher-order statistics in 
(29), renormalized in the high-Reynolds-number limit, is given concisely by 

) PzN(t, X, y )=  T(t, xi, yg) = ~ ff)2N(t, Vix, Way) (41) 
i i E ~  

where Vi-: R 2N--+R2N and Wi-: R2N--+R N a re  linear transformations 
defined as follows for each i e N. 

L e t  ejGR 2N be the standard orthonormal basis for R 2N with 
1 ~< j ~< 2N; then 

Vi-eiT=e21 1, I <<.I~N 
(42) 

Vi-ei? =e21 , 1 <<.I<~N 

(Wi(y))l= yi?-yi+, I <~I<~N (43) 

and for any y e R 2N, 

3. INERTIAL R A N G E  R E N O R M A L I Z A T I O N  FOR THE 
S E C O N D - O R D E R  STATIST ICS  

In this section, the inertial range renormalization theory is developed 
for the second-order statistics 

Pc(t, X, y ) =  (T(t, x1, Yl) r(t, x2, Y2)) (44) 

to illustrate the main features in detail of the general renormalization 
theory developed in Section 4. In this special case, it follows from (38), 
(40), (41) that in the high-Reynolds-number limit, 

P2(t, x, y )=  ~2(t, xl - x 2 ,  Yl -Y2) (45) 
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where r X, y) satisfies the explicit Fokker-Planck equation 

0~i~ 2 02(~i 2 02(P2 02 
- 2K -~-5-x2 + 2K T + 2 V2[R~(0) - Re(x)] - -  {/}2 0t 0y 2 

with initial conditions 

(46) 

q}2 I,=o = Ro( x, Y) (47) 

[There is a slight abuse of notation in (46), (47) above which should not 
confuse the reader.] 

For the inertial range renormalization theory for the second-order 
statistics, one seeks self-consistent scaling laws as in (9) with parameters 
(~(2),/3(2)) = A(2) and A(2) so that the normalized second-order correla- 
tion functions RAA 1P 2 defined by 

RAA-'P2=[A()~)]-IPz(fl-~ x','q.'g5)y) 

l XI--X2 Yl--Y2~ (48) 

approach a nontrivial fixed point in the inertial range scaling limit as 2 --+ 0. 
With the notation motivated by (48) and (46), (47), R~A-teb2=g}~ 
satisfies the rescaled Fokker-Planck equation 

0~ 22 02 0~2 02 0:2 V 2 IRe(O) e ['X'~ 02 a 
& =2K-f i -~x2~-~+2~c~-~y2~+- f i -2  -R ~,~)~y2~2 (49) 

with the initial condition 

(50) 

The scale-invariant solution q}2,~ that describes the inertial range 
renormalization depends crucially on the velocity statistics as manifested 
by the scaling behavior of the quantity 

R~(O)-R~(2 ) as 2--+0 (51) 

The quantity in (51) exhibits a "phase transition" in its scaling behavior as 
the spectral parameter e from (4) crosses from the region 8 < 2 to the region 
2 < 8 < 4. With R~(0) - R~(x) defined in (32), it is a simple matter to use 
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the Riemann-Lebesgue lemma because Ikf 1 -~ p~(lk[ ) is integrable for e < 2 
and verify that 

lim[R~(O)-R*(X)]=R'(O) for - 0 0 < 8 < 2  (52) 
~ + 0  k \~/J 

On the other hand, for 2 < 8 < 4  it is a simple matter to rescale (32) 
utilizing the fact that poo(lkl) is smooth with po~(0)= 1 and compute the 
completely different scaling behavior 

}imo{IR'(O)--R~(2)]2"-z}=C~lxl'-e for 2 < 8 < 4  (53) 

with 

i 
oo  

Ca= [1-cos(2rck)]  Ikl 1 ~dk (54) 
c o  

This different scaling behavior is a direct consequence of the long-range 
correlations in the velocity field for 8 > 2. I remind the reader that the 
integral in (54) is convergent for 2 <e  < 4  and does not depend on the 
ultraviolet cutoff poo(lkl). On the other hand, the formula in (52) for R'(0) 
for 8 < 2  depends on the ultraviolet cutoff p~(Ikl). With (49)-(54), it 
is a simple matter to compute in a formal fashion the self-consistent 
scaling laws A(2) as well as the renormalized fixed point q~2., defining the 
second-order correlation functions in the inertial range. For simplicity 
in exposition, it is assumed below that the correlation function of the 
Gaussian random initial data in (40) is short range and satisfies 

0 < R o =  Ro(x, y) dxdy< +oo (55) 

The M e a n - F i e l d  Regime: e < 2 .  First, consider the mean-field 
regime with 8 < 2. With the behavior in (52) and Eq. (49) for q~, the usual 
self-consistent diffusive scaling laws 

~(2) = 2, fi(2) = 22, A(2) = 22 (56) 

apply and guarantee, with (55), formally that ~ - +  ~2,~ as 2--+0, where 
~2,~ satisfies the diffusion equation 

, 02 ~2 

at ~ , @2 , (57) 
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with initial conditions 

~2,~ I,=0 = R0a(x) | a(y) (58) 

Of course, the solution (b2,~ can be written down explicitly as a multi- 
ple of the fundamental solution of the heat equation with enhanced y 
diffusivity, 2VZR~(0), due to the random velocity fluctuations; this inertial 
range correlation function (b2, ~ depends on the random initial data satis- 
fying (55) through the constant Ro. Clearly, ~2 is scale invariant with the 
scaling laws from (56), so that RAq~2.~ = q~2,~. The scale-invariant initial 
condition in (58) corresponds to Gaussian white-noise random initial data. 

The  A n o m a l o u s  Sca l ing  Regime:  2 < ~ < 4. Next, consider the 
anomalous scaling regime with 2 < e < 4. I follow the same strategy as in 
the mean-field regime; however, as a consequence of the long-range 
velocity correlations for ~ > 2, the inertial range sealing theory exhibits 
anomalous behavior. With the asymptotic scaling behavior in (53) for e 
with 2 < e < 4, the equation for ~2 ~ in (49) can be written in the form 

22 a2 ~2 a2 

at f l ~ x  2 2~ f l  ~ y  2 

According to (53), the expression in braces in (59) is independent of 2 and 
behaves like C~ Ix l  ~ 2 in the inertial range scaling regime with 2--, 0; thus, 
unlike the mean-field regime, for 2 < ~ < 4, there are three independent 
scaling coefficients in (59). The simple mean-field scaling from (56) implies 
the coefficient e222 "/• ~ oe and the second-order correlations are not 
renormalized in this regime. The alternative needed to guarantee a finite 
nontrivial renormalized equation as 2 ~ 0 in (59) is to choose 

22 e22a-. 

With this choice, it follows that ~2/fl _.+ 0 and 

fl = 22, a = 2 ~72, A(2) = 2' + ~/2 (60) 

With the scaling laws in (60), it follows from (59), (55), and (53) that 
formally ~b~ converges as 2--+ 0 to qi2,~, where q~2,, satisfies the fixed-point 
equation 

0~2,~ d e 2 d2 
at -2tC~x2qb2'*+2V2Ce Ix["- Oy ---'-~2,e for 2 < 5 < 4  (61) 
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with initial condition 

~b2,~ It=0 = Ro6(X) | (~(Y) (62) 

The solution ~2,~, which defines the renormalized second-order correlations, 
is a multiple of the fundamental solution of Eq. (61) and obviously is com- 
pletely independent of the ultraviolet cutoff p~([kJ); unlike the mean-field 
regime, Eq. (61) exhibits increasingly strong diffusion as Ixl--,oo as a 
consequence of the infrared divergence of mean energy [see (6) above] and 
the long-range correlations in the velocity field as manifested in (53) for 
2 < e < d--such strong enhanced diffusion is typical in fully developed tur- 
bulenceJ 2'3) The Green's function defined in (61) and (62) has a completely 
different character than the standard fundamental solution for a heat 
equation from (59) corresponding to the mean-field behavior for e < 2 (see 
Section 3.1 below). The reader can verify readily that with the scaling laws 
in (60), RAq~2,~ = ~2,~ as should necessarily be satisfied at the renormalized 
fixed point. This completes the formal renormalization theory for the 
second-order statistics. 

3.1. Anomalous Turbulent Decay for 2 < ~ < 4  

Here I illustrate the rather different behavior of the statistical energy 
decay in the inertial range for the anomalous regime 2 < e < 4 compared 
with the ordinary diffusive decay of energy in the mean-field regime with 
e < 2. This is achieved through the quantum mechanical analogy developed 
in Section 2; here I utilize the fact that the parabolic quantum problems 
associated with the inertial range fixed point in (61) for 2 < e < 4 have a 
completely different spectral character than the standard behavior 
associated with Eq. (57), which is valid for e < 2. 

To demonstrate these facets of anomalous energy decay in a simple 
fashion, consider Gaussian random initial data To(y), which is a function 
of y alone, so that the correlation function Ro(y)=  (To(y+y' )To( f ) )  
satisfies 

0 < R o =  Ro(y) dy< +oo (63) 

With the choice A(2)= 2 for e < 2 and A(2)= 2 e/2 for 2 < e < 4, the same 
respective scaling laws in (56) and (60) for e(2),/3(2) yield the same inertial 
range limit equations in (57) and (61) for the two regions as developed 
earlier; however, in this case with To(y), the inertial range scale-invariant 
initial data is given by 

m 

q~2,~ It=o = Ro( 1 | (64) 
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For -- oo < e < 2, the standard Fourier representation for the solution 
of (57) with the initial data in (64) is given by 

~2,e(t, y) = R~o e2~ikYe -(>: + 2vzR`(O)) t4re2k2 dk (65) 
- -co  

By (44) and (45), the mean statistical energy in the scalar satisfies 
[T~(t)] 2 = ~b2,,(t, 0) and is given through (65) by 

T~(t) 2 =Yoo e -(2K+2v2R~(~ tgrc2k2 d~ 
- - c o  

=k-o0{4~[~+ V2R~(O)]t} -1/2 for - o o  < e < 2  (66) 

The formula in (66) illustrates that in the regime of spectral parameters 
with - oo < e < 2, the decay of mean energy in the inertial range scaling is 
the standard diffusive decay with a rate t-~/2; the only role of the random 
fluctuations is to enhance this rate of decay through the coefficient V2R~(0) 
in (66). 

For the anomalous scaling regime with 2 < e < 4, more rapid decay of 
mean energy occurs in the inertial range due to long-range correlations in 
the velocity field. The solution of (61) with the initial data in (64) can be 
written in the form 

(I)2,~(l , X, y) = f e 2aiyk4~2,*(t, x, k) dk (67) 

where ~2,~(t, x, k) is the solution of the parabolic quantum problem 

~2 
O ~2 =2K ~2_87r,2V2CekZlxle_2~ze for 2 < e < 4  (68) 
05 ' Y x  ~ ' 

with 
432. ~ I,=0 = 1 

The strong potential Ixl ~ - 2  for 2 < e < 4  guarantees that the Schr6dinger 
operator on the right-hand side of (68) has only pure point spectrum it7) 
with a complete family of orthonormal eigenfunctions--this behavior 
contrasts strongly with the inertial range behavior for e < 2  from (57) 
and (65), which involves only the continuous spectrum of a free-space 
Schr6dinger operator. Let O~ be the L2-normalized even eigenfunction 
with eigenvalue/to for the normalized Schr6dinger operator satisfying 

d 2 
O+ - - ~ ~ 1 7 6  d x 2  ff/o _ i x ]  e 2 0 _ _  

0 ~  = ~9~ (69) 

I (0o)~ dx = 1 
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with 0 < #o < #o < #o < .-..  It follows from simple rescalings of (69) in the 
eigenfunction expansion in (68) for q32,~(t, x, k) that ~ba~(t, x, y) is given 
for t > 0 by the formula 

~b2,~(t, x, y) 

= f [exp(2rayk)] d ~ exp[-#~ tc 1-2/~ V2C~12/~ ik[4/~ t] 
j 1 

x 0~ 2/~ ~c -1/' I vRGI i/~ ik12/~ x)} dk (70) 

0 0 where d) =~ ~pj(x)dx. By (44) and (45), the mean statistical energy in the 
scalar in the inertial range satisfies T~(t) = q~2,~(t, 0, 0) and is given through 
(70) by 

T~(t) = f ~ c ~ exp[-#~ 4/~ x 1-2/~ IV2C~]2/~ jk]4/~ t] dk 
j = l  

= t - ~ / 4 / s  [ V 2 C ~ I -  1/2 D, (71) 

for 2 < e < 4, where D~ is the finite constant 

and c ~ = 0 ~ I 0~ dx. The formula in (71) reveals more rapid turbulent 
decay of scalar energy in the inertial range at the rate O(t -~/4) in the 
anomalous scaling regime, 2 < ~ < 4, when compared with the ordinary 
viscous decay of mean energy in (66) for the mean-field regime with 
- oe < e < 2. The exponent of this decay rate for second-order correlations 
in the inertial range serves as an order parameter in the phase transition 
with the standard value 1/2 for e < 2 and the anomalous value e/4 for 
2 < 5 < 4 .  

4. INERTIAL RANGE RENORMALIZATION FOR THE 
HIGHER-ORDER STATISTICS 

Here the inertial range renormalization theory, as summarized in 
(9)-(13) of the introduction, is developed for the vector of higher-order 

(17 2N T(t, xi, Yi)). statistics, P = (P2N), N = 1, 2, 3, 4 ..... with P2u(t, X, y) = i l i=  1 
The overall strategy follows the one already developed in detail for the 
second-order statistics in Section 3 and utilizes the scaling behavior for the 
general Fokker-Planck equations in (38), (39) in the analogous fashion as 
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in (56)-(62) of Section 3. It is assumed here that the correlation function 
of the Gaussian random initial data also satisfies the condition in (55) from 
Section 3. With the formula in (41) for P2u(t, X, y) via a finite sum of terms 
i nvo lv ing  (I)2N(t , X, y),  it is clearly sufficient to develop the renormalization 
theory for the vector �9 = (CP2N(t , X, y)) ,  N =  1, 2, 3,.... With the inertial 
range renormalization transformation RAA-1~  defined componentwise by 

( RaA ~ ) U =  I-a(2)] U ~2N ) , ) ,  ~-~) (72) 

for N =  1, 2, 3,..., one seeks self-consistent scaling laws as in (9) with a 
nontrivial universal fixed point for �9 in the limit, ;t ~ 0, which depends 
essentially only on the spectral parameter e. With (38) and (39), it follows 
that ~ N  = ( R A A - I ( I I ) N  satisfies the Fokker-Planck equation, 

+ 2 V 2 j ~  1= R~(O)_R ~ x2j-~x2j 1 __Oy2 ~N 

i~j ' 2 ' 2 ' ~ q ~ N  (73) 

with the initial data 

~ I,=0 = I-I [A(2) ] -1  Ro , (74) 
i= l  

The critical fact, in addition to (52)-(54), which is utilized in the renor- 
realization theory for �9 is the formula from (35), which establishes that the 
interaction potential P(yl/2, y2/)~, y3/)~, y4/2) is given by the sum over four 
terms involving the expression R ' ( 0 ) - R ~ ( ( y i - y f ) / 2 ) ;  thus, 

1  ast esame  a,in  

in (52) and (53) as established earlier for R~(0) - R ~ ( 2 )  properties 

for the two regions e < 2 and 2 < e < 4 (75) 

The Mean-F ie ld  Regime, ~<2. With Eq. (73) for ~ U  and the 
behavior in (52), (75) for e <2,  the same self-consistent diffusive scaling 
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2 laws from (56) guarantee formally that ~ 2 N  "+ ~2N, E, where ~2N, e 
the diffusion equation 

satisfies 

a{~2N, e 
at --  ]~7 A x ~ 2 N ,  e"~- E2K + 2 V 2 R ~ ( 0 ) ]  Ay(P2N, g (76) 

with initial conditions 

N 

(P2U, e ] t=0 ~--- R--~o N U 6~(X2i-- 1 - -  X2i) (~ ~5(Yi) (77)  
i=1 

It follows from (76), (77) that the solution of (76), r , factorizes as a 
product involving second-order correlations, i.e., 

N 

(b2N,~= I~ ~2.~(t, x2i 1-xz,,  y,) (78) 
i=1 

with r x, y) given in (57). The factorization in (78) together with (41) 
guarantees that the renormalized statistics for the scalar in the mean-field 
regime, e < 2, are Gaussian. It is a simple matter for the reader to verify 
that with the diffusive scaling law for ~(Z), fl(2) in (56), RAthe = (I~e for 
e < 2, so that @~ determined by (76)-(78) is the inertial range renormalized 
fixed point. 

The Anomalous Scaling Regime, 2 < ~ < 4 .  With the impor- 
tant facts in (73), (75) and the asymptotic scaling behavior of 
R(O)-R(x/2) in (53), it follows by the same reasoning as utilized in 
Section 3 that with the same anomalous scaling laws in (60), I~N---)' ~2N, e 

formally as 2 ~ 0. Here {~)2U, g satisfies the diffusion equation 

N 
alf)2N, 8 __ iI e - 2  02 

=KAxr  e " I - 2 V 2 C e  2 Ix2j x2J- JaY---5~lb2N'" at j = l  
a z 

+ V2C~ ~ i~(x2i_1,x2i, x2j_l,x2j)~.-ygSSg.,~b2N,~ (79) 
iva j tYyitYYj 

with [~ given by 

/~(Yl, Y2, Y3, Y4)~-lYl--Y4[ ~ 2+ ly2_y31~-2 

-- [Yl--Y31 ~ - 2 -  [Yz--Y41 ~-2 (80) 

and the initial conditions in (77), which are associated with Gaussian white 
noise random initial data. Furthermore, it is a simple matter for the reader 
to verify that with the anomalous scaling laws in (60) for 2 < ~ < 4  and 
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Oe = (~J2N, s) defined through the solution of (79) and (77), O~ satisfies 
RAO~ = O~; thus, O~ is the inertial range fixed point for the higher-order 
statistics in the regime 2 < e < 4. In this anomalous regime, the statistics for 
the scalar do not factorize as in (75) and are non-Gaussian; in fact, under 
suitable hypotheses on the random initial data, the probability distribution 
function for the scalar at a single point is broader than Gaussian. (~5'~6) 
These last results complete the description of the inertial range renormal- 
ization theory for the scalar as summarized in (9)-(13) in the introduction. 

4.1. Noncanonical  Renormalized Fixed Points and 
In termediate  Asymptot ics  

In the preceding part of this section, it has been established that with 
the appropriate nonlinear inertial range scaling laws A(2)= (c~(2), fl(2)) 
and A(2) from (56) and (60) for e < 2 and 2 < e < 4, respectively, the vector 
of correlation functions P from (8) converges as 2 ~ 0 to a renormalized 
fixed point P~ satisfying RApe = P~. These fixed point correlation functions 
are determined via scale-invariant solutions O~ of the family of Fokker-  
Planck equations in (76) and (79) for e < 2 and 2 < e < 4, respectively; these 
scale-invariant solutions satisfy RAO~ = O~. 

Here, I point out that for each e there are other nonlinear scaling laws, 
A(2) = (~(2),/~(2)), and amplitude scaling A(2) so that a fixed point for the 
vector of correlation functions is achieved, i.e., R ~ ( ~ ) =  ~ ,  where , ~  is 
determined by scale-invariant solutions for a family of Fokker-Planck 
equations. However, as discussed below, these additional renormalizedfixed 
points O~ are noncanonical in the sense that they all arise from the universal 
fixed points determined by Eqs. (76) and (79) by simply rescaling these 
solutions O~ in appropriate inner and outer limits in the formal sense of 
intermediate asymptotics. (11) In this sense, the fixed points O~ determined 
through (76) and (79) exhibit the universal behavior of the inertial range 
statistics. 

To illustrate this phenomenon, first consider the mean-field regime 
with e < 2 and the anisotropic scaling laws from (9) given by 

~(2) = 2 ~, ~ < 1 

= (81) 
~(2)=;~1+~ 

~~ (R~O)2N satisfy the Fokker-Planck equa- In this case, the functions q~2~v = 
tions in (73) with coefficients computed through (81). With (75) and (52) 
for e < 2 ,  it is a simple matter for the reader to verify that as 2--*0, 
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�9 ~--. ~ ,  a fixed point with R ~  = ~ ,  where t~2N.e is determined by the 
degenerate Fokker-Planck equation 

c~$2N'~ = [2~c + 2V2R~(0)] Ay~)2Ne (82) 
c~t 

with the initial conditions from (77). Similarly, for e < 2 and the anisotropic 
scaling laws 

~,()o) = 2 ~, O > 1 

/~(2) = 2 2 (83) 

it follows by similar reasoning that ~ ~ with ~ a statistical fixed 
point, where 1~2N, e is determined by the degenerate Fokker-Planck 
equation 

~)2N, e 
c ~ t  - tr A x ~ Z N ,  e (84) 

with the initial conditions from (77). I claim that the statistical behavior in 
both families of noncanonical fixed points satisfying (81), (82) and (83), 
(84) respectively can be obtained from the canonical fixed point ~ defined 
through (76), (77) in suitable scaling limits. By applying the scaling 
transformations 

x'=flx,  y '=8(2)y ,  t '=fl(fi)t  (85) 

to the canonical fixed point ~ as 2 ~ 0 the reader can verify immediately 
that with ~(2), fl(2) defined by either (81) or (83) one recovers the families 
of fixed points defined through (82) or (84), respectively, in the limit, 2 ~ 0. 
The canonical statistical fixed point in (76), (77) and defined through the 
usual diffusive scaling laws with e(2)= 2 and fl(2)= 22 has an obvious 
interpretation as an intermediate asymptotic state m) compared with the 
two families of noncanonical fixed points. The scaling laws in (8t) apply at 
shorter renormalized times as regards the x-diffusion scaling in the canoni- 
cal fixed point, while the scaling laws in (83) apply at coarser y length 
scales as regards the y diffusion in the canonical fixed point; thus, the 
canonical statistical fixed point arises between a balance of these two 
competing effects as an intermediate asymptotic state which contains both 
types of statistical behavior in these respective scaling regions in suitable 
rescaled limits. 
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There is similar behavior as described in the above paragraph in the 
anomalous regime with 2 <e  < 4. With the scaling laws analogous to (81) 
given by 

~(4) = 4 ~ ~ < s 
2 

/~(4) = 420 +2-,  (86) 

it follows from (51), (52), and (73) that there is a family of statistical fixed 
points ~ in the limit 4-~0 with R ~ =  ~,  and ~2u,~ satisfies the 
degenerate version of the Fokker-Planck equation in (77) with • = 0; these 
fixed points correspond to shorter renormalized times as regards the 
x-diffusion scaling in the canonical fixed point @~ defined through (76), 
(77), and the scaling laws in (57). With the scaling laws analogous to (83) 
with 

g 
~(4) = 4 ~ 0 > - 

2 

/~(4) = 22 (87) 

~ ( 4 ) =  41+~ 

a second family of noncanonical statistical fixed points arises as 2 ~ 0; here 
the components of the fixed point vector ~ satisfy the degenerate Fokker- 
Planck equation in (84). These fixed points r are associated with the 
scaling laws in (87), which apply at coarser y length scales as regards the 
y diffusion in the scaling laws from (60) for the canonical fixed points. As 
for the mean-field regime, in the anomalous region with 2 < e < 4, these 
statistical fixed points r can be recovered in the limit 4 ~ 0 from the 
canonical fixed point ~ defined through (79), (77), and (60) by applying 
the scaling transformations in (85) based on either (86) or (87) to ~ ;  thus, 
the canonical fixed point ~ is an intermediate asymptotic state in the 
anomalous regime. It is worth mentioning here that the changes in scaling 
behavior from e < 2 to e > 2 through the "phase transition" provide another 
explicit connection between the renormalization theory for the model and 
intermediate asymptotics in the Fokker-Planck PDEs which arises in the 
crossover to anomalous behavior for e > 2. (1t,a2) 

5, C O N C L U D I N G  D ISCUSSION 

In this paper, the inertial range renormalization theory has been 
developed in detail for a simple model for turbulent diffusion with statisti- 
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cal velocity fields having long-range correlations in space and white noise 
correlations in time. To the author's knowledge, this is the first example of 
turbulent diffusion with the velocity statistics having some essential features 
of developed turbulence where the inertial range renormalization theory 
has been developed in full rigorous detail without any ad hoc approxima- 
tions. 

First, renormalization in the high-Reynolds-number limit was devel- 
oped in Section 2 through an exact quantum mechanical analogy for (2) 
combined with some simple analytic facts and algebraic manipulation. 
In Sections 3 and 4, the scale-invariant inertial range renormalized fixed 
point theory for the vector of higher-order statistics P was developed in 
detail for Gaussian random initial data. There is phase transition in both 
the canonical scaling laws and the structure of the renormalized fixed point 
as the spectral parameter e, measuring the strength of long-range correla- 
tions in the velocity field, crosses over from the mean-field regime with 
e < 2  to the anomalous regime with e>2.  The quantum analogy was 
exploited in Section 3 to yield features of anomalous turbulent decay in the 
inertial range; the interesting features of noncanonical fixed points and 
explicit connections with intermediate asymptotics for the renormalization 
theory have also been developed in detail in Section 4. The model analyzed 
here is a model for turbulence much like the spherical model ~1~ in critical 
phenomena, where analytic formulas rather than complex diagrammatic 
perturbation theory can be used in renorrnalization to yield scaling laws, 
statistical fixed points, etc. 

It is interesting to compare and contrast the results obtained here with 
those developed by Avellaneda and the author in earlier work. (6-8) The 
principal goal in refs. 6 and 7 was to study eddy diffusivity theory, a 
problem of great practical importance, for the model in (2) with the 
large-scale isotropic deterministic initial data 

Tl~=o= To(gx, gy), 6 4 1  (88) 

Thus, the initial data varies on the integral scale [-see (5) above]. The main 
problem studied in refs. 6 and 7 involved the effect of the velocity statistics 
on scaling theories and effective equations for the large-scale, long-time 
average, (T(x/6, y/g, t/p2(g))), involving the mean statistics. Such sim- 
plified equations are equations for eddy diffusivity since they incorporate 
the coupling of the statistical regime of velocity scales to the integral scales 
for the diffusing scalar through simpler deterministic equations for the 
mean, (T(x/g, y/g, t/p2(g))), varying only on the large scales. The theory 
in refs. 6 and 7 involves velocity statistics depending on two parameters, e 
and z; as explained in ref. 8, the velocity statistics utilized in this paper 

822/73/3-4-6 
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correspond to an extreme limiting case from refs. 6 and 7 with z = 0 and 
varying. Both the inertial range scaling theory developed here and the 
scaling theory for eddy diffusivity in this special case with z = 0 exhibit a 
phase transition with anomalous behavior for e with 2 < e < 4 and mean- 
field behavior for e with - oe < ~ < 2. However, in refs. 6 and 7, the inertial 
range scaling parameter 2 f rom this paper is not taken as independent, but 
as a consequence of  (88) is necessarily linked to the initial data through the 
identification 2 = 8, ~(2)= 5, f i (2)= p2(5)--the result is that the equations 
for the mean, T---lima ~ o ( T a  }, are not scale invariant (7) in the anomalous 
regime 2 < e < 4 and depend on the infrared cutoff po(hkl). Such results for 
eddy diffusivity theories for a diffusing scalar are in agreement with the 
conventional wisdom of the turbulence community, (2"3) where it was 
suggested long ago (19) that the mean statistics of the diffusing scalar are 
dominated by the velocity scales with the most energy and thus depend on 
velocities near the integral scale for 2 < e < 4 as reflected through the cutoff 
Po(Ikl ). In ref. 7, the second-order statistics are also studied in the limit with 
the inertial range parameter 2 linked with 5 via the same scaling law as 
the mean statistics, 2 = 3, ~(2)= 6, /~(2)= p2(5). This approach yields the 
behavior of the second-order statistics at scales in the inertial range 
necessarily very close to the integral scales and includes interesting qualita- 
tive behavior in the model for physical laws (v) such as the Richardson 4/3 
law, etc.; however, the equations and scaling laws in ref. 7 for the second- 
order statistics do not apply throughout the inertial range and do not 
correspond to the canonical fixed point for the second-order statistics P2; 
these results are developed here in Sections 3 and 4. 

With the results from refs. 6 and 7 and other recent work (13'18) 
claiming to study the inertial range renormalization theory in the models 
from (2) solely through the mean statistics, it is interesting to comment 
briefly on the behavior of the scaling theory for the mean statistics for 
the scalar T with the velocity statistics in (3)-(7) and deterministic initial 
data. It follows from similar manipulations as developed in Section 2 [see 
Eq. (3.43) in ref. 8] that with 

the mean statistical quantity T ~'a satisfies the diffusion equation 

0 ~,.4, a 42 #2 - ~2 02 

at = ~ ~ ~ x  ~ ~ , a  + =~ [~ + R;(O)] --ay ~ T a,a 
(90) 
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with R,~(0) given in (4). If, as in Section 2, the high-Reynolds-number limit 
3 ~ 0 is taken in (90), then 

R~(0) ~ ~ for 2 < e < 4  

and the equations for the mean statistics for the scalar as given in (90) do 
not renormalize to finite quantities unless 2, ~(2),/~(2), and 6 are linked as, 
for example, in refs. 6 and 7. This divergence has lead some authors (13' 18) to 
claim that the problem in (2) is not renormatizable in the inertial range for 
2 < e < 4 ;  in that work, ~13) scale invariance of equations for the mean 
statistics is restored by artificial, nonphysical devices, such as time-depend- 
ent infrared cutoffs (to quote from ref. 13, "time dependence in the infrared 
cut-off.., is utilized to achieve consistency between the asymptotic scaling 
exponents and the scaling behavior of the asymptotic equations"). It is well 
known and standard in the turbulence community that universal scaling 
behavior for the diffusing scalar should be determined by second-order 
statistics ~2'3) and not the mean statistics. This was already discussed in 1938 
by Taylor. (19) Such a fact has been established in this paper; despite the 
infrared divergence exhibited in (90) as 6 ~ 0 for the mean statistics, the 
entire universal scale-invariant renormalized fixed point for the scalar 
statistics in the inertial range with random initial data has been developed 
for the model in (2) in Sections 3 and 4 for the anomalous regime 2 < e < 4. 
Furthermore, the universal scaling theory for the second-order statistics 
determines the scaling behavior of all higher-order statistical quantities. It 
would be very interesting to generalize the results in this paper to the more 
complicated families of velocity statistics in refs. 6 and 7 for the model 
in (2). 

Finally, it is worth mentioning here that in a suitable sense, the 
random shear flow models discussed here are not only a qualitative "toy" 
model, but are strongly related to a quantitative model for renormalization 
theory for the general transport diffusion problem in (1) with isotropic 
incompressible velocity fields. Such a link has been developed recently by 
the author (2~ with a rigorous mathematical theory of renormalization and 
will be published elsewhere. 
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